If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2-50=13
We move all terms to the left:
7z^2-50-(13)=0
We add all the numbers together, and all the variables
7z^2-63=0
a = 7; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·7·(-63)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*7}=\frac{-42}{14} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*7}=\frac{42}{14} =3 $
| 7m+35=12 | | -11=4-5x | | 2(4x+2)=10x-2 | | x-0.5x^2=0.064 | | -10=p+5 | | 8x=21x^2 | | 1x÷-9=-16 | | 5x-4=278 | | -10x²+20x=0 | | 4/n=5/n+2 | | 2n/6=4n/12 | | -6x+11+8x=29 | | 4+n/5=2 | | 4(9m-5)=52 | | -2.5f+0.7-12-16= | | n/8+13=4 | | 4a+7=25 | | 22x+10=32x+5 | | 2(x+3)=x-10 | | (3x+12)+x=18 | | -14(x+5)+12x=-90 | | 4/5=x/3 | | 1/2z+6=3/2(-4)+6) | | 5x-4+7x-3=89 | | 5x-4+7x-3=88 | | 8(3n-1)=52 | | 360/40=x/2 | | 5(5+x)=50 | | 4n-7-5n=-12 | | 5n+4/3=2 | | 140x-4=108x+8 | | 2n-27=180 |